Translocations involving anaplastic lymphoma kinase (ALK) (2024)

References

  • Anagnostopoulos I, Stein H . 2000 Pathology 21: 178–189

  • Bai RY, Coutinho S, Morris SW, Peschel C, Duyster J . 1998a Blood 92: 2110a

  • Bai RY, Dieter P, Peschel C, Morris SW, Duyster J . 1998b Mol. Cell. Biol. 18: 6951–6961

  • Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J . 2000 Blood 96: 4319–4327

  • Barbacid M . 1995 Ann. NY Acad. Sci. 766: 442–458

  • Beg AA, Baltimore D . 1996 Science 274: 782–784

  • Benharroch D, Meguerian-Bedoyan Z, Lamant L, Amin C, Brugieres L, Terrier-Lacombe MJ, Haralambieva E, Pulford K, Pileri S, Morris SW, Mason DY, Delsol G . 1998 Blood 91: 2076–2084

  • Beylot-Barry M, Groppi A, Vergier B, Pulford K, Merlio JP . 1998 Blood 91: 4668–4676

  • Bischof D, Pulford K, Mason DY, Morris SW . 1997 Mol. Cell. Biol. 17: 2312–2325

  • Borer RA, Lehner CF, Eppenberger HM, Nigg EA . 1989 Cell 56: 379–390

  • Brunel V, Sainty D, Carbuccia N, Arnoulet C, Costello R, Mozziconacci MJ, Simonetti J, Coignet L, Gabert J, Stoppa AM, Birg F, Lafagepochitaloff M . 1995 Genes Chrom. Cancer 14: 307–312

  • Butti MG, Bongarzone I, Ferraresi G, Mondellini P, Borrello MG, Pierotti MA . 1995 Genomics 28: 15–24

  • Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S . 1991 Cell 64: 281–302

  • Chan PK, Chan FY . 1995 Biochim. Biophys. Acta 1262: 37–42

  • Chan PK Chan FY, Morris SW, Xie Z . 1997 Nucleic Acids Res. 25: 1225–1232

  • Chan PK, Liu QR, Durban E . 1990 Biochem. J. 270: 549–552

  • Chan WY, Liu QR, Borjigin J, Busch H, Rennert OM, Tease LA, Chan PK . 1989 Biochemistry 28: 1033–1039

  • Chauhan AK, Li YS, Deuel TF . 1993 Proc. Natl. Acad. Sci. USA 90: 679–682

  • Choudhuri R, Zhang HT, Donnini S, Ziche M, Bicknell R . 1997 Cancer Res. 57: 1814–1819

  • Colleoni GW, Bridge JA, Garicochea B, Liu J, Filippa DA, Ladanyi M . 2000 Am. J. Pathol. 156: 781–789

  • Cordell JL, Pulford KA, Bigerna B, Roncador G, Banham A, Colombo E, Pelicci PG, Mason DY, Falini B . 1999 Blood 93: 632–642

  • Courty J, Dauchel MC, Caruelle D, Perderiset M, Barritault D . 1991 Biochem. Biophys. Res. Commun. 180: 145–151

  • Czubayko F, Riegel AT, Wellstein A . 1994 J. Biol. Chem. 269: 21358–21363

  • Czubayko F, Schulte AM, Berchem GJ, Wellstein A . 1996 Proc. Natl. Acad. Sci. USA 93: 14753–14758

  • Delsol G, Lamant L, Mariame B, Pulford K, Dastugue N, Brousset P, Rigal-Huguet F, al Saati T, Cerretti DP, Morris SW, Mason DY . 1997 Blood 89: 1483–1490

  • Drexler HG, Gignac SM, von Wasielewski R, Werner M, Dirks WG . 2000 Leukemia 14: 1533–1559

  • Durkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H . 1992 Cell 68: 421–427

  • Ellis TM, Simms PE, Slivnick DJ, Jack HM, Fisher RI . 1993 J. Immunol. 151: 2380–2389

  • Falini B, Bigerna B, Fizzotti M, Pulford K, Pileri SA, Delsol G, Carbone A, Paulli M, Magrini U, Menestrina F, Giardini R, Pilotti S, Mezzelani A, Ugolini B, Billi M, Pucciarini A, Pacini R, Pelicci PG, Flenghi L . 1998 Am. J. Pathol. 153: 875–886

  • Falini B, Pileri S, Zinzani PL, Carbone A, Zagonel V, Wolf-Peeters C, Verhoef G, Menestrina F, Todeschini G, Paulli M, Lazzarino M, Giardini R, Aiello A, Foss HD, Araujo I, Fizzotti M, Pelicci PG, Flenghi L, Martelli MF, Santucci A . 1999a Blood 93: 2697–2706

  • Falini B, Pulford K, Pucciarini A, Carbone A, De Wolf-Peeters C, Cordell J, Fizzotti M, Santucci A, Pelicci PG, Pileri S, Campo E, Ott G, Delsol G, Mason DY . 1999b Blood 94: 3509–3515

  • Fang W, Hartmann N, Chow DT, Riegel AT, Wellstein A . 1992 J. Biol. Chem. 267: 25889–25897

  • Foss HD, Marafioti T, Stein H . 2000 Pathologe 21: 124–136

  • Fujimoto J, Shiota M, Iwahara T, Seki N, Satoh H, Mori S, Yamamoto T . 1996 Proc. Natl. Acad. Sci. USA 93: 4181–4186

  • Gascoyne RD, Aoun P, Wu D, Chhanabhai M, Skinnider BF, Greiner TC, Morris SW, Connors JM, Vose JM, Viswanatha DS, Coldman A, Weisenburger DD . 1999 Blood 93: 3913–3921

  • Gogusev J, Nezelof C . 1998 Hematol. Oncol. Clin. North. Am. 12: 445–463

  • Greco A, Mariani C, Miranda C, Lupas A, Pagliardini S, Pomati M, Pierotti MA . 1995 Mol. Cell. Biol. 15: 6118–6127

  • Griffin CA, Hawkins AL, Dvorak C, Henkle C, Ellingham T, Perlman EJ . 1999 Cancer Res. 59: 2776–2780

  • Harris NL, Jaffe ES, Stein H, Banks PM, Chan JK, Cleary ML, Delsol G, De Wolf-Peeters C, Falini B, Gatter KC . 1994 Blood 84: 1361–1392

  • Hernandez L, Pinyol M, Hernandez S, Bea S, Pulford K, Rosenwald A, Lamant L, Falini B, Ott G, Mason DY, Delsol G, Campo E . 1999 Blood 94: 3265–3268

  • Hsu H, Shu HB, Pan MG, Goeddel DV . 1996 Cell 84: 299–308

  • Hübinger G, Scheffrahn I, Muller E, Bai R, Duyster J, Morris SW, Schrezenmeier H, Bergmann L . 1999a Exp. Hematol. 27: 1796–1805

  • Hübinger G, Wehnis E, Maurer U, Morris SW, Bergmann L . 1999b Blood 94: 598a

  • Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T, Mori S, Ratzkin B, Yamamoto T . 1997 Oncogene 14: 439–449

  • Jiang YP, Wang H, D'Eustachio P, Musacchio JM, Schlessinger J, Sap J . 1993 Mol. Cell. Biol. 13: 2942–2951

  • Kadin ME . 1997 Cancer Surv. 30: 77–86

  • Kadin ME, Morris SW . 1998 Leuk. Lymphoma 29: 249–256

  • Khwaja A . 1999 Nature 401: 33–34

  • Kinney MC, Kadin ME . 1999 Am. J. Clin. Pathol. 111: S56–S67

  • Kinney MC, Greer JP, Kadin ME, DeCouteau JF, Collins RD . 1996 Lab. Invest. 74: 114A

  • Kuefer MU, Look AT, Pulford K, Behm FG, Pattengale PK, Mason DY, Morris SW . 1997 Blood 90: 2901–2910

  • Ladanyi M . 1997 Cancer Surv. 30: 59–75

  • Ladanyi M, Cavalchire G . 1996a Diagn. Mol. Pathol. 5: 154–158

  • Ladanyi M, Cavalchire G . 1996b Genes Chromos. Cancer 15: 173–177

  • Lamant L, Dastugue N, Pulford K, Delsol G, Mariame B . 1999 Blood 93: 3088–3095

  • Lamant L, Pulford K, Bischof D, Morris SW, Mason DY, Delsol G, Mariame B . 2000 Am. J. Pathol. 156: 1711–1721

  • Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL, Pinkus GS, Xiao S, Yi ES, Fletcher CD, Fletcher JA . 2000 Am. J. Pathol. 157: 377–384

  • Lee SY, Park CG, Choi Y . 1996 J. Exp. Med. 183: 669–674

  • Leevers SJ, Vanhaesebroeck B, Waterfield MD . 1999 Curr. Opin. Cell. Biol. 11: 219–225

  • Li S, Gillessen S, Tomasson MH, Dranoff G, Gilliland DG, van Etten RA . 2001 Blood 97: 1442–1450

  • Li YS, Milner PG, Chauhan AK, Watson MA, Hoffman RM, Kodner CM, Milbrandt J, Deuel TF . 1990 Science 250: 1690–1694

  • Liu QR, Chan PK . 1991 Eur. J. Biochem. 200: 715–721

  • Liu ZG, Hsu H, Goeddel DV, Karin M . 1996 Cell 87: 565–576

  • Luthra R, Pugh WC, Waasdorp M, Morris W, Cabanillas F, Chan PK, Sarris AH . 1998 Hematopathol. Mol. Hematol. 11: 173–183

  • Ma Z, Cools J, Marynen P, Cui X, Siebert R, Gesk S, Schlegelberger B, Peeters B, De Wolf-Peeters C, Wlodarska I, Morris SW . 2000 Blood 95: 2144–2149

  • Maeda N, Nishiwaki T, Shintani T, Hamanaka H, Noda A . 1996 J. Biol. Chem. 271: 21446–21452

  • Mahajan R, Delphin C, Guan T, Gerace L, Melchior F . 1997 Cell 88: 97–107

  • Mason DY, Pulford KA, Bischof D, Kuefer MU, Butler LH, Lamant L, Delsol G, Morris SW . 1998 Cancer Res. 58: 1057–1062

  • Michaud N, Goldfarb DS . 1991 J. Cell. Biol. 112: 215–223

  • Miething C, Bai R, Morris SW, von Schilling C, Schmidt B, Peschel C, Duyster J . 2000 Blood 96: 93a

  • Mir SS, Richter BW, Duckett CS . 2000 Blood 96: 4307–4312

  • Mitev L, Christova S, Hadjiev E, Guenova M, Oucheva R, Valkov I, Manolova Y . 1998 Leuk. Lymphoma 28: 613–616

  • Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT . 1994 Science 263: 1281–1284

  • Morris SW, Naeve C, Mathew P, James PL, Kirstein MN, Cui X, Witte DP . 1997 Oncogene 14: 2175–2188

  • Morris SW, Xue L, Ma Z, Kinney MC . 2001 Br. J. Haematol. 113: 275–279

  • Nakamura S, Shiota M, Nakagawa A, Yatabe Y, Kojima M, Motoori T, Suzuki R, Kagami Y, Ogura M, Morishima Y, Mizoguchi Y, Okamoto M, Seto M, Koshikawa T, Mori S, Suchi T . 1997 Am. J. Surg. Pathol. 21: 1420–1432

  • Neckameyer WS, Shibuya M, Hsu MT, Wang LH . 1986 Mol. Cell. Biol. 6: 1478–1486

  • Nieborowska-Skorska M, Slupianek A, Zhang Q, Raghunath PN, Xue L, Morris SW, Wasik M, Skorski T . 2000 Blood 96: 2017a

  • Ochs R, Lischwe M, O'Leary P, Busch H . 1983 Exp. Cell. Res. 146: 139–149

  • Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE, Sukasawa K . 2000 Cell 103: 127–140

  • Park JP, Curran MJ, Levy NB, Davis TH, Elliott JH, Mohandas TK . 1997 Cancer Genet. Cytogenet. 96: 118–122

  • Pawson T, Gish D . 1992 Cell 71: 359–362

  • Peter M, Nakagawa J, Doree M, Labbe JC, Nigg EA . 1990 Cell 60: 791–801

  • Pfeifer W, Levi E, Petrogiannis-Haliotis T, Lehmann L, Wang Z, Kadin ME . 1999 Am. J. Pathol. 155: 1353–1359

  • Pileri SA, Pulford K, Mori S, Mason DY, Sabattini E, Roncador G, Piccioli M, Ceccarelli C, Piccaluga PP, Santini D, Leone O, Stein H, Falini B . 1997 Am. J. Pathol. 150: 1207–1211

  • Pulford K, Falini B, Banham AH, Codrington D, Roberton H, Hatton C, Mason DY . 2000 Blood 96: 1605–1607

  • Pulford K, Falini B, Cordell J, Rosenwald A, Ott G, Muller-Hermelink HK, MacLennan KA, Lamant L, Carbone A, Campo E, Mason DY . 1999 Am. J. Pathol. 154: 1657–1663

  • Pulford K, Lamant L, Morris SW, Butler LH, Wood KM, Stroud D, Delsol G, Mason DY . 1997 Blood 89: 1394–1404

  • Raulo E, Chernousov MA, Carey DJ, Nolo R, Rauvala H . 1994 J. Biol. Chem. 269: 12999–13004

  • Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ . 1996 Blood 87: 882–886

  • Rodrigues GA, Park M . 1993 Mol. Cell. Biol. 13: 6711–6722

  • Rosenwald A, Ott G, Pulford K, Katzenberger T, Kuhl J, Kalla J, Ott MM, Mason DY, Muller-Hermelink HK . 1999 Blood 94: 362–364

  • Sandlund JT, Pui CH, Roberts WM, Santana VM, Morris SW, Berard CW, Hutchison RE, Ribeiro RC, Mahmoud H, Crist WM . 1994a Blood 84: 2467–2471

  • Sandlund JT, Pui CH, Santana VM, Mahmoud H, Roberts WM, Morris S, Raimondi S, Ribeiro R, Crist WM, Lin JS . 1994b J. Clin. Oncol. 12: 895–898

  • Schulte AM, Lai S, Kurtz A, Czubayko F, Riegel AT, Wellstein A . 1996 Proc. Natl. Acad. Sci. USA 93: 14759–14764

  • Schulte AM, Wellstein A . 1997 Tumor Angiogenesis Bicknell R, Lewis CM and Ferrara N. (eds). Oxford University Press: Oxford, New York, Tokyo pp. 273–289

    Google Scholar

  • Schwab U, Stein H, Gerdes J, Lemke H, Kirchner H, Schaadt M, Diehl V . 1982 Nature 299: 65–67

  • Sexl V, Piekorz R, Moriggl R, Rohrer J, Brown MP, Bunting KD, Rothammer K, Roussel MF, Ihle JN . 2000 Blood 96: 2277–2283

  • Shiota M, Mori S . 1996 Leuk. Lymphoma 23: 25–32

  • Shiota M, Fujimoto J, Semba T, Satoh H, Yamamoto T, Mori S . 1994a Oncogene 9: 1567–1574

  • Shiota M, Fujimoto J, Takenaga M, Satoh H, Ichinohasama R, Abe M, Nakano M, Yamamoto T, Mori S . 1994b Blood 84: 3648–3652

  • Shiota M, Nakamura S, Ichinohasama R, Abe M, Akagi T, Takeshita M, Mori N, Fujimoto J, Miyauchi J, Mikata A, Nanba K, Takami T, Yamabe H, Takano Y, Izumo T, Nagatani T, Mohri N, Nasu K, Satoh H, Katano H, Fujimoto J, Yamamoto T, Mori S . 1995 Blood 86: 1954–1960

  • Skinnider BF, Connors JM, Sutcliffe SB, Gascoyne RD . 1999 Hematol. Oncol. 17: 137–148

  • Slupianek A, Nieborowska-Skorska M, Hoser G, Morrione A, Majewski M, Xue L, Morris SW, Wasik MA, Skorski T . 2001 Cancer Res. 61: 2194–2199

  • Smith CA, Gruss HJ, Davis T, Anderson D, Farrah T, Baker E, Sutherland GR, Brannan CI, Copeland NG, Jenkins NA . 1993 Cell 73: 1349–1360

  • Souttou B, Juhl H, Hackenbruck J, Rockseisen M, Klomp HJ, Raulais D, Vigny M, Wellstein A . 1998 J. Natl. Cancer Inst. 90: 1468–1473

  • Stein H, Foss HD, Durkop H, Marafioti T, Delsol G, Pulford K, Pileri S, Falini B . 2000 Blood 96: 3681–3695

  • Stein H, Mason DY, Gerdes J, O'Connor N, Wainscoat J, Pallesen G, Gatter K, Falini B, Delsol G, Lemke H, Schwarting R, Lennert K . 1985 Blood 66: 848–858

  • Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malercyk C, Caughey DJ, Went D, Karavanov A, Riegel AT, Wellstein A . 2001 J. Biol. Chem. 18: 16772–16779

  • Szebeni A, Herrera JE, Olson MO . 1995 Biochemistry 34: 8037–8042

  • Tian ZG, Longo DL, Funakoshi S, Asai O, Ferris DK, Widmer M, Murphy WJ . 1995 Cancer Res. 55: 5335–5341

  • Touriol C, Greenland C, Lamant L, Pulford K, Bernard F, Rousset T, Mason DY, Delsol G . 2000 Blood 95: 3204–3207

  • Trinei M, Lanfrancone L, Campo E, Pulford K, Mason DY, Pelicci PG, Falini B . 2000 Cancer Res. 60: 793–798

  • Trumper L, Pfreundschuh M, Bonin FV, Daus H . 1998 Br. J. Haematol. 103: 1138–1144

  • Ueno H, Honda H, Nakamoto T, Yamagata T, Sasaki K, Miyagawa K, Mitani K, Yazaki Y, Hirai H . 1997 Oncogene 14: 3067–3072

  • Ueno H, Sasaki K, Kozutsumi H, Miyagawa K, Mitani K, Yazaki Y, Hirai H . 1996 J. Biol. Chem. 271: 27707–27714

  • Valdez BC, Perlaky L, Henning D, Saijo Y, Chan PK, Busch H . 1994 J. Biol. Chem. 269: 23776–23783

  • Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM . 1996 Science 274: 787–789

  • Wellstein A, Fang WJ, Khatri A, Lu Y, Swain SS, Dickson RB, Sasse J, Riegel AT, Lippman ME . 1992 J. Biol. Chem. 267: 2582–2587

  • Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ, Carroll AJ, Morris SW . 1996 Oncogene 12: 265–275

  • Yung BY, Busch H, Chan PK . 1985 Biochim. Biophys. Acta 826: 167–173

  • Zatsepina OV, Rousselet A, Chan PK, Olson MO, Jordan EG, Bornens M . 1999 J. Cell. Sci. 112: 455–466

Download references

Translocations involving anaplastic lymphoma kinase (ALK) (2024)

FAQs

Does everyone have an ALK gene? ›

ALK is a type of gene that exists in all of us. The ALK gene makes a protein that is involved in cell growth. Changes to the naturally occurring ALK gene can cause cancer.

What is the survival rate for alk positive anaplastic large cell lymphoma? ›

Depending on factors like your cancer type and your IPI score, the five-year survival rate of ALK-positive ALCL ranges from 33% to 90%. Similarly, the five-year survival rate of ALK-negative ALCL ranges from 13% to 74%. The survival rates for primary cutaneous ALCL and BIA-ALCL are excellent.

What is ALK in anaplastic large cell lymphoma? ›

ALK-positive ALCL (also known as ALK+ ALCL) is the most common type of ALCL. In ALK-positive ALCL, the abnormal T cells have a genetic change (mutation) that means they make a protein called 'anaplastic lymphoma kinase' (ALK). ALK can be detected with tests on the surface of the tumour cell.

How is ALK negative anaplastic large cell lymphoma treated? ›

Treatment / Management

ALK(-) ALCL is generally responsive to doxorubicin-based chemotherapy regimens, but relapses are frequent [1]. The standard first-line treatment for systemic ALCL is cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP).

What is an ALK translocation? ›

The translocation creates a fusion gene consisting of the ALK (anaplastic lymphoma kinase) gene and the nucleophosmin (NPM) gene: the 3' half of ALK, derived from chromosome 2 and coding for the catalytic domain, is fused to the 5' portion of NPM from chromosome 5.

Can ALK be cured? ›

This type is very hard to cure. About 90% of people who have ALK-positive lung cancer don't find out until the disease has reached stage IV. With treatment, about half of people with stage IV ALK-positive lung cancer live nearly 7 years or longer. So if you have symptoms, see a doctor.

What is the deadliest lymphoma? ›

Burkitt lymphoma is considered the most aggressive form of lymphoma and is one of the fastest growing of all cancers.

How aggressive is anaplastic large cell lymphoma? ›

ALCL (ALK-positive) is a moderately aggressive T cell lymphoma. The overall prognosis is better than other peripheral T-cell lymphomas. ALCL (ALK-positive) has a better prognosis than ALCL (ALK-negative) with a 5-year overall-all (OS) of 80% compared to 48%.

How do you know if you have anaplastic large cell lymphoma? ›

A diagnosis of ALCL requires taking a biopsy (small sample of tumor tissue or abnormal skin tissue) and looking at the cells under a microscope. Additional tests may be conducted to give physicians more information about the disease and how far it has spread in the body.

How do I treat an anaplastic large cell? ›

How is anaplastic large cell lymphoma treated? Systemic ALCL is treated with standard chemotherapy. Other therapies include radiotherapy, stem cell transplants and steroid therapy. People with ALK-positive ALCL generally respond well to chemotherapy.

What does ALK mean in oncology? ›

The anaplastic lymphoma kinase (ALK) gene plays an important physiologic role in the development of the brain and can be oncogenically altered in several malignancies, including non-small-cell lung cancer (NSCLC) and anaplastic large cell lymphomas (ALCL).

What is the tumor marker for anaplastic large cell lymphoma? ›

ALK expression is the most specific marker for the diagnosis of ALCL and is detected in 60–85% cases (Figure 17.39) [1]. ALK expression is cytoplasmic or nuclear, or both.

How long can you live with anaplastic large cell lymphoma? ›

Anaplastic large cell lymphoma (ALCL)

If your ALCL doesn't make ALK it is called ALK-negative ALCL. This affects your outlook (prognosis). Generally for people with ALK positive ALCL: 80 in 100 people (80%) survive for 5 years or more.

What is the prognosis for anaplastic lymphoma? ›

The 5-year survival rate is typically around 90% for the primary cutaneous form of CD30+ anaplastic large cell lymphoma (ALCL). In fact, cases of primary cutaneous CD30+ ALCL may regress without therapeutic intervention.

What causes anaplastic lymphoma? ›

Doctors don't fully understand what causes ALCL. Certain factors may increase your chances, but experts have identified no clear risk factors . According to the Lymphoma Research Foundation, ALK-positive ALCL happens more frequently in young adults and children, and ALK-negative ALCL occurs more often in older adults.

Does everyone have MTHFR gene? ›

These are called Single Nucleotide Polymorphisms, or SNPs for short (pronounced like "snip"). One of the most discussed SNPs affects the enzyme Methylenetetrahydrofolate reductase (MTHFR). Everyone has two MTHFR genes, one inherited from your mother and one from your father.

Does everyone have mutant genes? ›

Some parents pass on more mutations to their children than others. Everyone is a mutant but some are prone to diverge more than others, report scientists at University of Utah Health.

Does everyone have the cystic fibrosis gene? ›

Every person has two copies of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. A person must inherit two copies of the CFTR gene that contain mutations — one copy from each parent — to have cystic fibrosis.

What is the most common ALK mutation? ›

The most common one is called EML4. Even within EML4, there are different types depending on exactly where ALK fused with the gene. At this point, the recommended course of treatment is the same for most patients who are ALK positive, regardless of the very specific type of ALK rearrangement you may have.

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Prof. Nancy Dach

Last Updated:

Views: 6193

Rating: 4.7 / 5 (77 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Prof. Nancy Dach

Birthday: 1993-08-23

Address: 569 Waelchi Ports, South Blainebury, LA 11589

Phone: +9958996486049

Job: Sales Manager

Hobby: Web surfing, Scuba diving, Mountaineering, Writing, Sailing, Dance, Blacksmithing

Introduction: My name is Prof. Nancy Dach, I am a lively, joyous, courageous, lovely, tender, charming, open person who loves writing and wants to share my knowledge and understanding with you.